Scroll Top

Why not print out your motorcycle, Skis and a Snowboard?

3DprintThe 3D printed motorcycle created by TE Connectivity to prove to its engineers that polymers can withstand great amounts of stress. The bike is styled after a Harley Davison softwail and can do a whopping 15mph with two riders.

Because of advancements in hard and soft thermoplastic polymers, metal sintering techniques and printing software and hardware platforms, 3D printing machines are capable of producing a wide variety of objects that can withstand a great deal of force.

That was TE Connectivity’s goal when it used 3D printing to build a working motorcycle. The company, which makes electronic connectivity and sensor equipment for the automotive, aerospace and defense industries, wanted to prove to its 7,500 engineers that 3D printing was up to the task of creating working production parts.

The motorcycle, whose design harkens back to a classic Harley Davidson Softail, took 1,000 hours to build and had so many parts that TE Connectivity principal engineer Charles Fry lost count of how many there actually were.

The motorcycle weighs 250 lbs. and can easily accommodate two riders. The bike has been tested with weights of up to 400 lbs., and while its tiny 750-watt, 1hp electric motor strains under that kind of load, it can easily transport a person of average weight up to 15mph for more than two minutes.

The cost to build: $25,000.

3D printing your snow sports

3Dprint2Stratasys Skunkworks’ principal engineer Kevin Johnson (left) and senior applications engineer Dominic Mannella hold their 3D printed snowboard and skis.

The skis, modeled after ones from the snow sports company K2, took 120 hours to print. As with all ski bottoms, a slippery layer of P-Tex (polyethylene) became the base on which all other layers were added.

The center, and the thickest layer of the skis, were printed on an enormous Stratasys Fortis 900c 3D printer using an FDM process extruding Ultem 9085 polymer filament. The Ultem is strong and resists moisture, Mannella said. The skis required 50 layers of Ultem to complete.

The 170 centimeter skis couldn’t fit into a single printer, so they were produced in two parts — front and rear. Additionaly a metal edge was applied so that, as with every ski, the edge can carve turns in the snow.

The various layers of materials — the P-Tex, four layers of Ultem and the metal edges — were clamped together and bound using a 24-hour drying epoxy.